
I R R E G U L A R  F I L T R A T I O N  IN S T R A T I F I E D  G R O U N D S  

M. A .  S a t t a r o v  

A number  of theore t ica l  investigations,  c a r r i e d  out by P. Ya. Polubarinova-Kochina and other  Soviet 
r e s e a r c h e r s ,  and the hydrodynamic evidence of the Dupuls formula ,  given by I. A. Charnyi ,  showed good 
agreement  of the resu l t s  of the hydraulic theory with the accura te  hydrodynamic theory .  Subsequently, 
many leading r e s e a r c h  worke r s  turned the i r  attention to the grea t  potential i t ies and ef fec t iveness  of the 
hydraulic theory  in solving prac t ica l  f i l t ra t ion problems.  

At presen t ,  owing to the works  of P. Ya. Polubarinova-Kochina,  I. A. Charnyi,  S. F. Aver 'yanov,  N.N. 
Verigin,  V. I. Aravin,  S. N. Numerov,  V. M. Shestakov, F. M. Bochever ,  and other r e s e a r c h  w o rk e r s ,  the 
hydraul ic  theory of f i l t rat ion has been widely developed and fo rms  a f i rm  basis of hydrogeological  ca lcu-  
lat ions.  

In this field, P. Ya. Polubar inova-Kochina [1-3], in par t icular ,  has developed accura te  solution meth-  
ods and has also examined the problems of l inear iz ing the Boussinesq equation; she has solved a number  
of impor tant  prac t ica l  problems of f i l t ra t ion in in terconnected s t ra ta  and has invest igated problems of the 
influence of infi l t rat ion and evaporat ion on the distribution of p r e s s u r e  heads in s t ra t i f ied  grounds h~ the 
case  of es tabl ished movements .  

Within the f r amework  of the hydraulic theory ,  based on the hypothesis of A. N. Myatiev and N. K. 
Girinskii ,  in accordance  with which the movement  of liquid takes place in wa te r -bea r ing  s t ra ta  mainly par -  
a l le l  to the plane of s t ra t i f ica t ion (but in the slightly permeable  clay s t ra ta  which separa tes  them it takes 
place perpendicular ly  to it), the f i l t ra t ion p roces s  in the s t ra t i f ied  grounds is descr ibed  by a c losed sys -  
t em of differential  equations of the el l ipt ical  and parabolic  types [1, 2]. 

In deriving these equations it is a s sumed  that in the p rocess  of interact ion of the wa te r -bea r ing  s t ra ta  
the slightly permeable  s t ra ta  only play the par t  of a connecting e lement  and, in the case of ex terna l  influ- 
ences  (during lowering and ra i s ing  of p r e s s u r e  heads in the wa te r -bear ing  levels) ,  the var ia t ions  taking 
place in slightly permeable  s t ra ta  as a r e su l t  of unimportant  e las t ic  r e s e r v e s  of f ree  mois tu re  a re  quite 
small .  

For  sys t ems  of wa te r -bea r ing  s t ra ta ,  in terconnected by solid clay in ters t ra t i f ica t ions  of small  thick-  
ness ,  obviously an assumption of this kind does not lead to la rge  e r r o r s .  Hence, the resu l t s  obtained by 
solving the sys tems  of equations of the hydraulic theory re f lec t  a true picture of the f i l t ra t ion p rocess  in 
s t ra t i f ied  grounds.  

1. The sys tem of differential  equations of nonstat ionary f i l t rat ion in interact ing s t ra ta  with the same 
slight gradient  i 0 can be wri t ten  in the form [1, 2] 

Oh. ~'i-I h ~'i 
~ -~ = k~,~Ah~ - -  ~ ( ~ - -  h~-l) - -  ~ (hl - -  h . 0  + wt ( 1 . 1 )  

( i = t , 2  ..... n) 

Here  A is the Laplace opera tor ,  and h i =h i (x, y, t) is the unknown p re s su re  head re la t ive  to a ce r ta in  
hor izontal  plane, 

w(x , : , t )  when i = 1 
w~= when i5/=1 
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w (x, y ,  t) is the l imit ing function of infil tration, a 1 is the effective porosi ty  of the s t ra tum without a p r e s -  
sure  head, r (i =2, 3, ..., n), Yi is the specif ic  weight of the water ,  fli* is the coefficient  of e las t ic -  
ity of the p r e s su re  s t ra ta ,  ki, 7ti a re  the f i l t rat ion coefficients ,  and mi,  gi a re  the capacit ies  of the wa te r -  
bear ing  and slightly pe rmeable  l aye r s .  In the sys tem (1.1) the magnitude of evaporat ion f rom a f ree  s u r -  
face is approximated  by the component 

xo ~o (h~ -- ho) (hi > ho) 

Here  h0=h00 +i0 x, and the p r e s s u r e  head in ( n + l ) - t h  s t ra tum hn+ l =hn+l, 0 +i0x, where h00 , hn+L0 ' ~t0, 
~0 a re  cer ta in  constants .  

It must  be noted that in the derivat ion of the f i r s t  equation the sys t ems  (1.1) usually become a non- 
l inear  equation with r e spec t  to h t .  Here  it is l inear ized,  and the water  capacity of the l aye r  h i - i ~  is a s -  
sumed to be equal to a cer ta in  mean quantity m 1 = const.  

Subsequently, changing over  to the dimensionless  magnitudes,  we deal with the following designations: 

hi----- h~(z,y,t) ~ z ] m ,  ~ q i ( x , t ) ] k i m  f 
m~ ' ~ ----- ( r [  m~'  q~ = (q i (r ,  t )]  2~kim~m~ (1.2) 

Here  ink, gk, and X k a re  quantit ies which co r respond  to the k- th  wa te r -bea r ing  and slightly permeable  
s t ra ta ,  x and r a re  the coordinates  of the region,  and q i  (x, t) and qi(r ,  t) a r e  the cor responding  discharges  
in plane paraUel  (v = 0) and ax i symmet r i ca l  (~ = 1) cases  of movement ,  which a re  expres sed  according to 
the Darcy law in dimensionless  quantit ies as foUows: 

q~ = ~*Oh~ / O~ (~ = 0,1) (1.3) 

If in the plane para l le l  case  the sys t em (1.1) multiplied by kim i is different iated with r e spec t  to x 
and in the case  of ax i symmet r i c  flow sys tem (1.3) is different iated w~h r e s p e c t  to r and multiplied by 
2vrkimi  and attention is paid to (1.3), for  dimensionless  d ischarges  we will obtain a sys tem of differential  

equations 

Oql 
r162 -~- a~A*qi - -  ~i-~ (q i  - -  qt-~) - -  ~i  ( q ~ - -  q~+x) ~ - e ~  ~ (i=~'~ ...... ) ( 1 . 4 )  

where 

In deriving the sys tem (1.4) in the ax i symmet r i c  case the gradient  i 0 is assumed to be equal to 0. 

Subsequently, in solving prob lems  with given values  of the discharge on the boundaries,  the regions  
of flow will p roceed  f rom sys tem (1.4). 

We will now assume that at  the initial moment  of t ime T =0 the functions of the discharge qi a re  equal 
to cer ta in  a r b i t r a r y  constant  magnitudes qi0" By using the Laplace t r an s fo rm  with respec t  to t ime we change 
over  f rom the initial to the r ep resen ta t ive  region 

0 

and we obtain the following sys tem of inhomogeneous ord inary  differential  equations: 

at A* Q~ - (a~p " ~ t - 1  "+ ~i)Q~ "4"~-aQ~-I +~tQt+l  ~ - a tq~o--Ft(~ ,P)  (1.5) 

where  c o  

F~ (~, p)  = ai~ j ~ e-p~dv ('r = O, t ) 
0 

A genera l  solution of sys tem (1.5) consis ts  of the sum of a par t i cu la r  and a general  solution of the 
corresponding homogeneous sys tem.  

H we r e s t r i c t  ourse lves  to examination of movement  in infinite s t ra ta  with l imi ted d i scha rges  at in- 
finity, then the following functions a re  the solution to the corresponding homogeneous system:  
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/Ai exp ( - -  ~o~) (in ~he plane parallel case) 
Qi= [At~K 1 (o3~) (in the axisymmetdc case) (i .6) 

where  K 1 (w~) is the Besse l  function of the f i r s t  o rder  of the second kind with an imag ina ry  a rgument .  

Having subst i tuted the values  Qi f r o m  (1.6) into the cor responding  homogeneous sy s t em,  we obtain 
the following s y s t e m  of a lgebra ic  equations for  Ai: 

( a l w  ~ - -  a ~ p  - -  ~ - x  - -  ~ ) A ~  +[8~_aAi_  x + [ 3 i A i +  1 = 0 
(A 0 = A~+l ~0)  (1.7) 

For  the exis tence  of a nontr ivial  solution of Ai of this  sys t em,  its de terminant  mus t  be equal to ze ro .  
Hence we will  obtain for  w2 a c h a r a c t e r i s t i c  equation in the fo rm of the de terminant  

{&d = 0 (k, z = l ,  2 . . . . .  n) (1.8) 

The e l emen t s  of this de te rminant  which a r e  not equal to ze ro  a r e  s i tuated along the main diagonal 
and a lso  along the two s y m m e t r i c a l  d iagonals :  

{AI~, A~s, ha4," " ' ,  An-l,n} and {A21, ABe, ha3," " " , /k . . . .  i} 

and they are determined by the following formulas: 

A~ ---- a ~ ,  ~ - -  a~p -- [~_~ --  ~ (k = i ,  2 ..... n), 
A~.~+~ = A~+~.~ = ~ (k = t ..... n -- t)  

V. N. ]~mikh [4] has shown that when p = 0  (a case  of s teady movemen t  of underground wa te r s ) ,  Eq. 
(1.8) has n s imple  posi t ive  roo t s .  S imi la r ly  it can be shown that when 0---Re p-~% Eq. (1.8) has  a lso  n 
s imple  posi t ive  roo t s  r 2, k = l ,  2, . . . ,  n. 

Hence for  each roo t  wk 2 of Eq. (1.8) the rank  of the ma t r ix  of the s y s t e m  (1.7) is equal to n -  1,and 
for  each  wk 2 the s y s t e m  (1.7) has the solution{ Alk . . . . .  Ank}, de te rmined  up to an accu racy  of the con-  
s tant  Alk. Then Aik = BikAtk. 

A pa r t i cu l a r  solution of Qi ~ (~, p) of the inhomogeneous s y s t e m  is  de te rmined  by a method of v a r i -  
ation of cons tants .  

Hence the solution of the inhomogeneous s y s t e m  (1.5) is wr i t ten  as 

Of= Y, A~&~'O~ + Q~~ (L p) 
~=~ (1.9) 

O o = e  - ~ ,  O~=K~(%~) (~=1  ..... n) ( ~ = 0 ,  i) 

In o rde r  to de te rmine  the a r b i t r a r y  Alk , it is n e c e s s a r y  to ass ign n conditions. For  example ,  in ex-  
ploiting the s t r a t a  of a well ,  it is n e c e s s a r y  to ass ign  the d i scharges  of the well  in each  s t r a t u m .  

The solution of s y s t e m  (1.4) is de te rmined  by the changeover  operat ion f rom the r e p r e s e n t a t i v e  func- 
tion Qi to the functions of the init ial  qi. Hence integrat ion of the express ion  (1.3) f r o m  }0 to } g ives  c o r -  
respondingly 

hi (~, ~) = f ql (~, ~____!) d~ 4- h i (~o, ~) (v = 0, i) (1.10) 

Meanwhile the a r b i t r a r y  functions h i (~ 0, T) can be t r e a t ed  as values  of the p r e s s u r e  heads,  where  
=~0. Let  the functions h i (~, r) f r o m  (1.10) sa t i s fy  the s y s t e m  (1.1) in cases  of plane pa ra l l e l  and ax i -  

s y m m e t r i c  movemen t .  Then subst i tut ing h i (~, T) f r o m  (1.10) into the s y s t e m  (1.1), where  $ =$0, in o rde r  
to de te rmine  the functions h i (~ 0, r) we a r r i v e  a t  the s y s t e m  of equations 

(x dhl 
i_EE ~u ~i:i  (hi - -  hi- i)  + ~i (hi - -  hi+i) = et (~o, T) JF ] i  (~o, ~) ( 1 . 1 1 )  

Here  

(v = o, i) 
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A pa r t i cu l a r  solution of the s y s t e m  (1.11), cor responding  to the initial condition hi (~0, 0) =hi0 , will 
be sought by an opera t ional  method.  

Introducing a new function Yi = hi-hi0 and designating hi_i,0-hi, 0 by Yi-l,i for  the r ep resen ta t ion  

H~ (~o, ~:) ---- f Yi (~o, "r;) e-~":d'r 
0 

we obtain a s y s t e m  of a lgebra ic  equations 

(a~p -~ ~u-~ -}- ~) Hi -- ~i_~H~_~ -- ~H~+, = b~_~.~p -~ + F~ (p) § El (p) 

where 

(1.12) 

oo cx:t 

0 0 

In de termining  the s y s t e m  (1.12), Dn is dist inct  f r o m  ze ro  at  any Re p-~0, s ince D n has  n s i m p l e n e g -  
at ive roo ts  Pk [4], and consequently the s y s t e m  (1.12) can be solved.  

Hence,  f r o m  (1.10) to (1.12) we obtain a solution of the s y s t e m  (1.1). 

We note that when applying the Laplace  t r a n s f o r m  with r e s p e c t  to ~ to the functions h i (~, ~) and when 
changing the o rde r  of integrat ion on the r igh t -hand  side of the express ion  (1.10), we obtain on the bas i s  
of the r ep re sen t a t i on  (1.9) 

n 

~=~ ~0 ~ a~+//~(~o,p) (~,=O,l) 

e o  (~) -- e - ~  - e ' ~  , e~ (~) = Ko ( t o , o )  - Ko (r  

Here  K 0 (w ~) is the Besse l  function of the ze ro  o rde r  of the second kind. In the same  way, the de-  
t e rmina t ion  of the base  functions h i (~, ~') in the given case  is r educed  to an operat ion of changeover  f r o m  
the r e p r e s e n t a t i o n s  Hi (~, ~) to the init ial  h i (~, ~-). 

2. In the s y s t e m  of n o n p r e s s u r e - h e a d / p r e s s u r e - h e a d  in terac t ing  w a t e r - b e a r i n g  s t r a t a  with l imi ted  
capac i t i es ,  the magnitude a i =r 1 for  p r e s s u r e  s t r a t a  ( i=2,  3, ..., n) is a smal l  magnitude of a high order ,  
which in a f i r s t  approximat ion  can be a s s u m e d  to be (~i=0 for  i=2 ,  3, .. . ,  n (a 1 =1). 

I t  is not difficult to show that  with an al lowance of this  kind, the de te rminant  of the s y s t e m  (1.12) i s  
dist inct  f r o m  ze ro  a t  any Rep_> 0. 

In the case  examined,  the solution of the s y s t e m  (1.11) is de te rmined  di rec t ly  by the sequence of the 
following functions: 

+ ~ -7~  nI(~r (2.1) 

h~ (~e, ~) ~i (n) ~. ,_ ! (Ri § hn+0 (~ = 2 ..... n) 
= tp~_ 1 (n) ,,,t-1 1- ~i-4qh-1 (n) (2.2) 

Here 

i ..~ i i [~h ' h"+ll b=~o+~, ~(n)=,==,~, HI=~-Lp~.~-7~ j 
( 2 . 3 )  n 

k f , d  

We note that  the function h i (~0, ~) is  a solution of the equation 

dhl 
(hi - -  H,) ~(n)  Rf (~o, v) -~s (~o, ~) (2.4) -g~- -t- 0 = 

in the case  of the initial  condition h i =hi0. 

The given equation (2.4) together  with the r e c u r r e n t  re la t ionsh ips  (2.2) c o m p r i s e s  a sy s t em identical  
to the s y s t e m  (1.11) in the case  where  a 1 =1, o~ i =0, i=2 ,  . . . ,  n .  
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From the solution of (2.1) and (2.2) it is possible to make some derivations, relating both to the qual- 
itative and to the quantitative analysis of the question of interaction of water-bearing strata in the case of 
irregular movements. 

i .  Since the function 

1 faq,  1 

is the speed of var ia t ion  of d ischarges  according to the coordinate in the fixed point (~0 ~ 0) of space at  any 
moment  of t ime T, then it is evident that the v a r i a t i b n f k  (~0, ?) turns  out to be g rea t e s t  in that s t r a tum (or 
those strata)  f rom which the evacuat ion takes place.  For  example,  if the reduct ion in level  takes place only 
in the f i r s t  p r e s s u r e l e s s  s t ra tum,  then among the f k  (~0, T) functions the g rea t e s t  will be f t  (~0, "A. 

On the other  hand, it is seen f rom the express ions  (2.1) to (2.3) that it consists  of the sum of the in- 
t eg ra l s  of the infi l t rat ion functions ~ (~0, T) and the functions of the ra te  of var ia t ion of the discharges  f k  
(~0, T), in which before  each f u n c t i o n f k  (~0, ~) stands the mult ipl ier  

~k(~) ~-~ + .  +~-~ ( k ~ i )  (2.5) % - 1  (n) = I~i._~. -1 +. . .+ [L. -1 

which dec reases  propor t ional ly  with the growth of k. In the given case,  for 111 (~0, ~) the unit mul t ip l ie r  
stands before  f i  (~0, "D, but the mul t ip l ier  1 / ~  (n) stands b e f o r e f n  (~0, T). Consequently, the function of 
the p r e s s u r e  head h i (~0, ~) consists  of components which re f lec t  the var ia t ion of the function of discharge 
of each s t ra tum in an in terval  of t ime [0, T), whereby the influence of more  distant wa te r -bea r ing  levels  
on the dynamics of the given s t ra tum dec rease s  in proport ion to the number  of slightly permeable  s t ra ta  
according to Eq. (2.5). 

It  is possible to a r r i v e  at  s imi la r  conclusions also for  the other  functions hi (~0, T). Thus the dis-  
turbance taking place in the f i r s t  s t r a tum without a p r e s s u r e  head, decreas ing 1 / ~  (n) t imes ,  is t r ansmi t t ed  
into the n- th  p r e s s u r e  level .  Such an analysis  is mos t  graphical ly obtained if for  all fii the condition fli=l 
is fulfilled, which indicates that the weakly pe rmea ted  s t ra ta  have the same re la t ionship l i / ~  i. Then 

(p~ (n) n -- k + i 
~ i - l ( n ) = a - - i §  b=~o~.  --. 

Hence the fo rm of the functions h i (~0, ~'} is somewhat simplified.  If it is cons idered  that the p e r -  
meabil i ty  of the slightly permeable  s t ra ta  dec reases  with increase  in their  depth under the surface  of the 
ear th ,  then, as can be seen f rom (2.5), this magnitude dec reases  even more  with inc rease  of k, and in the 
case  of slight lowering or ra i s ing  of the level  in the p r e s s u r e l e s s  s t r a tum (as a resu l t  of using hor izontal  
drainage or i rr igat ion) the var ia t ions  in the p r e s s u r e  levels  in deeper  s t ra ta  will be negligible.  

2. If in the absence of evacuation through a f ree  surface  of the p r e s s u r e l e s s  s t ra tum,  infi l t rat ion 
feed of the same region en te r s  the sys tem of s t ra ta  (~ > 0 cor responds  to infil tration, ~ < 0 cor responds  to 
evaporat ion,  fl0 = 0), then the whole of f k  (~ 0, "r)= 0, i .e . ,  in ternal  disturbance is absent in the s t ra ta ,  and 
the function of the p r e s s u r e  heads will a ssume the fo rm 

-c 

0 
h+l (2.6) 

hi (~0, T) = r (n) hi-1 (to, T) ~- 
~ - - -~ 1  (n) ~i-i~ ~-i (n) 

It is eas i ly  seen f rom (2.6) that the amplitude of the var ia t ion  given by the infi l t rat ion function ~ (~0,T), 
with remova l  downwards f rom the surface  of the ear th ,  dec reases  in proport ion to the number  of slightly 
permeable  s t ra ta  with the number  of p a r a m e t e r s  corresponding to it. 

We note that the derivat ions made here  re la te  only to the case of an assumption that the p r e s s u r e  head 
hn+ 1 is constant in (n+ 1)-th p r e s s u r e  level .  

It is evident that small  local  var ia t ions  taking place in adjoining, especial ly  distant s t ra ta  do not show 
a considerable  quantitative var ia t ion  in the dynamics of the wa te r -bea r ing  sandy levels  when they have a 
de termined gradient ,  a r emote  la te ra l  feed source ,  and a sufficiently high capacity.  The stating and so-  
lution of p roblems  of underground wate r  a re  possible assuming that the p r e s su re  head is constant  in s im-  
i lar  s t ra ta ,  when evacuation f rom them does not occur ,  since an allowance of this kind leads only to s impl i -  
fication of the mathemat ica l  model of the phenomenon without changing its nature .  
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3. Cases occur in which the system of strata,  located in the upper parts of the earth 's  crust,  is l im- 
ited from below by impervious rocks and forms a single rese rvo i r  of interconnected water-bearinglevels .  

The solution of the problem corresponding to this case is obtained from systems (2.1) to (2.3), where 

/~n-- O: 
"r ?1 

n 

~'i--I k=1 

It is seen from (2.?) that, as distinct from the previous case, the absence of a constant feed source 
from below modifies the result here somewhat in the quantitative sense. Now hi (~0, ~) consists of com- 
ponents which reflect the variation of the functions of the discharges of each stratum of the system in an 
interval of time [0, T) in which the influence of each of them on the level without a pressure head is trans- 
mi~ed without any changes from the side of the slightly porous strata. 

We will indicate one more formula which is obtained from system (2.7) by means of successive ad- 

dition: 
n ~--I l 

h~ (~0, ~) = h~ (~0, T) + ~, i~ (~, ~) ~, ~ (2.s) 

Any variation taking place in the pressure less  s tratum at the moment of time ~" is directly t rans-  
mitted to the lower level into the r e se rvo i r  of interconnected strata with impervious water support by taking 
into account the rigidity of the system of pressure  levels,  as shown by (2.8). However, here, as in the pre-  
vious case, the influence of any local internal  process (evacuation, etc.) is transmitted to the other strata 
of the rese rvo i r  fully dependent on the degree of water permeability of slightly permeable clay inters t ra t -  
ifications. 
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