IRREGULAR FILTRATION IN STRATIFIED GROUNDS

M. A. Sattarov

A number of theoretical investigations, carried out by P. Ya. Polubarinova-Kochina and other Soviet
researchers, and the hydrodynamic evidence of the Dupuis formula, given by I. A. Charnyi, showed good
agreement of the results of the hydraulic theory with the accurate hydrodynamic theory. Subsequently,
many leading research workers turned their attention to the great potentialities and effectiveness of the
hydraulic theory in solving practical filtration problems.

At present, owing to the works of P, Ya. Polubarinova-~Kochina, I. A. Charnyi, 8. F. Avertyanov, N.N,
Verigin, V. L. Aravin, S. N. Numerov, V. M. Shestakov, F. M. Bochever, and other research workers, the
hydraulic theory of filtration has been widely developed and forms a firm basis of hydrogeological calcu-
lations.

In this field, P. Ya. Polubarinova-Kochina [1-3}], in particular, has developed accurate solution meth-
ods and has also examined the problems of linearizing the Boussinesq equation; she has solved 2 number
of important practical problems of filtration in interconnected strata and has investigated problems of the
influence of infiltration and evaporation on the distribution of pressure heads in stratified grounds in the
case of established movements.

Within the framework of the hydraulic theory, based on the hypothesis of A. N. Myatiev and N. K.
Girinskii, in accordance with which the movement of liquid takes place in water~bearing strata mainly par-
allel to the plane of stratification (but in the slightly permeable clay strata which separates them it takes
place perpendicularly to it), the filtration process in the stratified grounds is described by a closed Sy S~
tem of differential equations of the elliptical and parabolic types {1, 2].

In deriving these equations it is assumed that in the process of interaction of the water-bearing strata
the slightly permeable strata only play the part of a connecting element and, in the case of external influ-
ences (during lowering and raising of pressure heads in the water-bearing levels), the variations taking
place in slightly permeable strata as a result of unimportant elastic reserves of free moisture are quite
small.

For systems of water-bearing strata, interconnected by solid clay interstratifications of small thick-
ness, obviously an assumption of this kind does not lead to large errors. Hence, the results obtained by
solving the systems of equations of the hydraulic theory reflect a true picture of the filtration process in
stratified grounds.

1. The system of differential equations of nonstationary filtration in interacting strata with the same
slight gradient i can be written in the form [1, 2]
oh, Ay Ay
S 55 = kamAh; — !T_i(hi —hig) — ™ (By — Biry) 4wy
(l = 19 2!---1 n)

Here A is the Laplace operator, and hj =hj (x, y, t) is the unknown pressure head relative to a certain
horizontal plane, :

(1.1)

i

{w(x, y,t) when i=1
= 0 when i=k1
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w (x, y, t} is the limiting function of infiltration, ¢, is the effective porosity of the stratum without a pres-
sure head, oy =yjmiB;* (i=2, 3, ..., n), yj is the specific weight of the water, Bi* is the coefficient of elastic-
ity of the pressure strata, ki, Aj are the filtration coefficients, and mj, p; are the capacities of the water-
bearing and slightly permeable layers. In the system (1.1} the magnitude of evaporation from a free sur-
face is approximated by the component

R (—h) (> ho)

Here hy=hgy +igx, and the pressure head in (n+1)-th stratum hy .y =hy 4 +ig%, where hog, by o 2,
kg are certain constants. ’

It must be noted that in the derivation of the first equation the systems (1.1) usually become a non-
linear equation with respect to hy. Here it is linearized, and the water capacity of the layer hj—ipx is as-
sumed to be equal to a certain mean quantity m, =const.

Subsequently, changing over to the dimensionless magnitudes, we deal with the following designations:
By = hi(z, 9, 0) E - {J:/ My {q’l {17, t}/ k’imi
§ == e, = ;=

my r/m’ g: {r, t)] 2mkeym;my (1.2)
ot N e Dbl _ Fapg e ’
T M w =g U mae o dm

Here my, py, and Ag are quantities which correspond to the k~th water-bearing and slightly permeable
strata, x and r are the coordinates of the region, and qi (x, t) and ¢j(r, t) are the corresponding discharges
in plane parallel (v =0) and axisymmetrical (v =1) cases of movement, which are expressed according to
the Darcy law in dimensionless quantities as follows:

q; = §*0h; [ 0% (v=0.1) (1.3)

If in the plane parallel case the system (1.1) multiplied by kym; is differentiated with respect to x
and in the case of axisymmetric flow system (1.3) is differentiated with respect to r and multiplied by
27rkym; and attention is paid to (1.3), for dimensionless discharges we will obtain a system of differential
equations

a i o s ‘
o _Bq-r = a;A*q; — Biy {q; — Gi1) — B: (0:— qun) -+ &4 (=1,2...m) (1.4)
where
P 5 o Be; , ;
A*=_a_g_§__%-ég, g = ‘i?'é%’ gazqn+1=;0(i—v) (V:O,i)

In deriving the system (1.4) in the axisymmetric case the gradient ij is assumed to be equal to 0.

Subsequently, in solving problems with given values of the discharge on the boundaries, the regions
of flow will proceed from system (1.4).

We will now assume that at the initial moment of time T =0 the functions of the discharge q; areequal
to certain arbitrary constant magnitudes qj,. By using the Laplace transform with respectiotime we change
over from the initial to the representative region

Lol
Q= S?ie"’ *dv
0

and we obtain the following system of inhomogeneous ordinary differential equations:

a; A* Q; — (0ip +Biy F B)0: +BiyQis +BiQisa = — a1g10 — Fi(E, p) (1.5)

where o

aSi

P p)=af \Gemdr (v=0,1)

A general solution of system (1.5) consists of the sum of a particular and a general solution of the
corresponding homogeneous system.

If we restrict ourselves to examination of movement in infinite strata with limited discharges at in-
finity, then the following functions are the solution to the corresponding homogeneous system:
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_ A;exp(— k) (in the plane parallel case) -
48K (wB) (in the axisymmetric case) (1.6)

where Ky (w¢) is the Bessel function of the first order of the second kind with an imaginary argument.
Having substituted the values Q; from (1.6) into the corresponding homogeneous system, we obtain
the following system of algebraic equations for Aj:

(aw® —ap — Biy — B4y +Biydiy +Bidi =0
(Ag = Anyy =0) (1.7)

For the existence of a nontrivial solution of Aj of this system, its determinant must be equal to zero.
Hence we will obtain for w? a characteristic equation in the form of the determinant
lAkl' =0 (k1 1= 11 27 svey n) (1.8)
The elements of this determinant which are not equal to zero are situated along the main diagonal
and also along the two symmetrical diagonals:
{A1z, Agsy Agay - oy Anegn} and {Agy, Aggy Ay - o5 Anynea
and they are determined by the following formulas:

Akk=ak2ﬁ)2—~dkp——3k_1—-3k (k= '1, 2,..., n),
Mg =Apar =08 (k=1,..,n—1)

V. N. Emikh [4] has shown that when p=0 (a case of steady movement of underground waters), Eq.
(1.8) has n simple positive roots. Similarly it can be shown that when 0 <Re p=w, Eq. (1.8) has also n
simple positive roots wkz, k=1, 2, ...,n.

Hence for each root wi? of Eq. (1.8) the rank of the matrix of the system (1.7) is equal to n—1,and
for each wkz the system (1.7) has the solution{ Ag, - ., Ank}, determined up to an accuracy of the con-
stant Ajz. Then Ajp =BjiAy).

A particular solution of Q;° (£, p) of the inhomogeneous system is determined by a method of vari~
ation of constants.

Hence the solution of the inhomogeneous system (1.5) is written as

Qi= D) AuBik*0,+ 0L &, p)
k=t (1.9)
By =¢, O =Ki(o) ((=1,..,n) (v=0,1)

In order to determine the arbitrary Ay, it is necessary to assign n conditions. For example, in ex-
ploiting the strata of a well, it is necessary to assign the discharges of the well in each stratum.

The solution of system (1.4) is determined by the changeover operation from the representative func-
tion Qi to the functions of the initial qi. Hence integration of the expression (1.3) from £y to £ gives cor~
respondingly

E
B =) L8 &+ (Go) (v=0,1) (1.10)
%

Meanwhile the arbitrary functions h;j(£,,T) can be treated as values of the pressure heads, where
£ =£y. Let the functions h; (¢, 7) from (1.10) satisfy the system (1.1) in cases of plane parallel and axi-
symmetric movement. Then substituting hj (¢, 7) from (1.10) into the system (1.1), where £ =t,, in order
to determine the functions hj (£y, 7) we arrive at the system of equations
dh;
;== By (B — hiea) + B; (B — Ber) = & (Bo, ¥) + f1 (Bo 7) {1.11)

Here

v ho=hot+iZe(1 —V), Bpa= b+ iomo (1 —v)
(v=0,1)

ji(gﬂy’r) = ! (‘%21

Aty
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A particular solution of the system (1.11), corresponding to the initial condition hj (¢4, 0) =hy,, will
be sought by an operational method.

Introducing a new function yj=h;-hj, and designating hi—i,o"hi,o by yij4,i for the representation

o«

HyEow) = $5s o vy evide

L]

we obtain a system of algebraic equations

(0P 4= By -+ By) H; — By Hioy — BiHiny = biy ;97 + Fi (p) + Ei(p) (1.12)
where
Fi(p) = Sfi(’éo,P)e‘de  By(p)= S &; (80, ) 77T, biys = Biahir,i — Biiin
[} 0

In determining the system (1.12), Dy is distinct from zero at any Re p=0, since Dy has n simple neg~
ative roots py [4], and consequently the system (1.12) can be solved.

Hence, from (1.10) to (1.12) we obtain a solution of the system (1.1).

We note that when applying the Laplace transform with respect to 7 to the functions h; (¢, 7) and when
changing the order of integration on the right-hand side of the expression (1.10), we obtain on the basis
of the representation (1,9)

7 £
Hiop) = 3 50,0 +) CED &+ HiGop) (=0

Qo) =¥ — e | Q(E) = Ko (ko) — Ko (o)

Here K, (w £) is the Bessel function of the zero order of the second kind. In the same way, the de-
termination of the base functions b (£, 7) in the given case is reduced to an operation of changeover from
the representations Hj (£, 7} to the initial by (£, 7).

2, In the system of nonpressure-head/pressure~head interacting water-bearing strata with limited
capacities, the magnitude oj =0i/0; for pressure strata (i=2, 3, ..., n) is a small magnitude of a high order,
which in a first approximation can be assumed to be @j =0 for i=2, 3, ..., n (a; =1).

It is not difficult to show that with an allowance of this kind, the determinant of the system (1.12) is’
distinct from zero at any Rep=0.

In the case examined, the solution of the system (1.11) is determined directly by the sequence of the
following functions:

B ) = Hym e [~ hag— {00+ b P ) ]
]

P1(m) (2.1}
) o Biln) 1 : .
h’L (gc’ 1") tp’l—l (n) hi—]. + Bi—~1‘pi—1 (n) (Rz + hn’ﬂ) (L 2!' wa n) (2 .2)
Here
N o 1 1 o
5=30+W, (Pa(n)‘—‘éiﬁ‘x Hy= 7;'[3{%%@;}—]
n (2.3)
Ri(En®) =D fxBoT)@x(n)  @ulm=1)
k=i
We note that the function by (£, 7) is a solution of the equation
ah 1 e
'3,“3‘%‘ biby—Hy) = me(gm ) heEen ) (2.4)

in the case of the initial condition by =hy,.

The given equation (2.4) together with the recurrent relationships (2.2) comprises a system identical
1o the system (1.11) in the case where oy =1, @;=0,i=2, ..., n, .
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From the solution of (2.1) and (2.2) it is possible to make some derivations, relating both to the qual-
itative and to the quantitative analysis of the question of interaction of water-bearing strata in the case of
irregular movements,

1. Since the function
_ i c'lqk
fk (E(h T) - g; ( aE )E’E.o

is the speed of variation of discharges according to the coordinate in the fixed point (¢4 0) of space at any
moment of time 7, then it is evident that the variation fi; (¢4, 7) turns out to be greatest in that stratum (or
those strata) from which the evacuation takes place, For example, if the reduction in level takes place only
in the first pressureless stratum, then among the f. (£, 7) functions the greatest will be f; (&,, T).

On the other hand, it is seen from the expressions (2.1) to (2.3) that it consists of the sum of the in-
tegrals of the infiltration functions € (£,, T) and the functions of the rate of variation of the discharges fk
(9, T), in which before each function fi (£,, 7) stands the multiplier

(pk(n) o Bk—l ++Bn-’1 (k> l)

P (n) - E‘i_fl B (2-5)

which decreases proportionally with the growth of k. In the given case, for hy (£, 7) the unit multiplier
stands before fy (£y, T), but the multiplier 1/¢y (n) stands before f, (£y, 7). Consequently, the function of
the pressure head hy (£,, T) consists of components which reflect the variation of the function of discharge
of each stratum in an interval of time [0, 7), whereby the influence of more distant water-bearing levels
on the dynamics of the given stratum decreases in proportion to the number of slightly permeable strata
according to Eq. (2.5).

It is possible to arrive at similar conclusions also for the other functions bj (£, 7). Thus the dis-~
turbance taking place in the first stratum without a pressure head, decreasing 1/<p1 {n) times, is fransmitted
into the n-th pressure level. Such an analysis is most graphically obtained if for all g; the condition 8=1
is fulfilled, which indicates that the weakly permeated strata have the same relationship P\i/ui. Then

oe) _n—kfl g L

9y (m) n—if2’

Hence the form of the functions hj (g;, 7} is somewhat simplified. If it is considered that the per-
meability of the slightly permeable strata decreases with increase in their depth under the surface of the
earth, then, as can be seen from (2.5), this magnitude decreases even more with increase of k, and in the
case of slight lowering or raising of the level in the pressureless stratum (as a result of using horizontal
drainage or irrigation) the variations in the pressure levels in deeper strata will be negligible.

2. If in the absence of evacuation through a free surface of the pressureless stratum, infiltration
feed of the same region enters the system of strata (>0 corresponds to infiltration, £ <0 corresponds to
evaporation, 8¢=0), then the whole of fi (¢, 7) =0, i.e., internal disturbance is absent in the strata, and
the function of the pressure heads will assume the form

T

By (BorT) = By — %" [hnﬂ — by — SE (8o, T) e’”dr]
H

(2.6)

. k
oo ™) = g 0 s B+ gy

»

It is easily seen from (2.6) that the amplitude of the variation given by the infiltration function £ (¢,,7)
with removal downwards from the surface of the earth, decreases in proportion to the number of slightly
permeable strata with the number of parameters corresponding to it.

We note that the derivations made here relate only to the case of an assumption that the pressure head
by 41 1S constant in (n+1)-th pressure level.

It is evident that small local variations taking place in adjoining, especially distant strata do not show
a considerable quantitative variation in the dynamics of the water-bearing sandy levels when they have a
determined gradient, a remote lateral feed source, and a sufficiently high capacity. The stating and so-
lution of problems of underground water are possible assuming that the pressure head is constant in sim-
ilar strata, when evacuation from them does not occur, since an allowance of this kind leads only to simpli-
fication of the mathematical model of the phenomenon without changing its nature.
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3. Cases occur in which the system of strata, located in the upper parts of the earth’s crust, is lim-
ited from below by impervious rocks and forms a single reservoir of interconnected water-bearing levels.

The solution of the problem corresponding to this case is obfained from systems (2.1) to (2.3), where
Bp—=0:

By (BoiT) = hp— eBe }:ho — Ry — S(é fe(Borv) + 2 (Bo, ’C)) 35“‘3‘5]

0 K=ap

L 2 2.7
By (Boy T) = hicy (Boy T) + ~.—k§} Fi Bor %)
=1 Jmay

It is seen from (2.7) that, as distinct from the previous case, the absence of a constant feed source
from below modifies the result here somewhat in the quantitative sense. Now by (¢y, 7) consists of com-
ponents which reflect the variation of the functions of the discharges of each stratum of the system in an
interval of time [0, T) in which the influence of each of them on the level without a pressure head is trans-
mitted without any changes from the side of the slightly porous strata.

We will indicate one more formula which is obtained from system (2.7) by means of successive ad-
dition:
. n k—1
BaGor®) = (B V) + 3 il ) 3 + (2.8)
] e
Any variation taking place in the pressureless stratum at the moment of time 7 is directly trans-
mitted to the lower level into the reservoir of interconnected strata with impervious water support by taking
into account the rigidity of the system of pressure levels, as shown by (2.8). However, here, a$ in the pre~
vious case, the influence of any local internal process {evacuation, etc.) is transmitted to the other strata
of the reservoir fully dependent on the degree of water permeability of slightly permeable clay interstrat-
ifications.
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